光生空穴具有很强的获得电子能力,可与催化剂表面吸附的O2和H2O发生反应生成羟基自由基,从而进一步氧化污染物。由于等离子体放电光催化过程有大量高能电子冲击、活性粒子、紫外线辐射等综合因素的协同作用,因而可以更快速有效地分解空气中有害物质和灭菌除臭。
近年来兴起的半导体光催化技术由于其能耗低,氧化性能强,已有大量研究。但该技术仍存在一些缺陷,如:反应受紫外光源限制;能量产率低;较难处理高浓度、大风量的气体等。对于这些问题的解决,研究者通过各种技术手段对光催化剂进行改性,进而提高光催化性能[2]。另一方面通过和各种外加场(超声波、电化学、等离子体等)进行耦合联用形成新型的高效光催化反应技术,取得了显著效果。尤其是低温等离子体在环境污染物处理方面的应用研究引起了人们的极大关注,被认为是环境污染物处理领域中有广适性、有发展前途的高新技术之一。目前,低温等离子体技术已经成功应用于烟气脱硫、脱氮、温室气体处理和VOCs的降解[6]。而低温等离子体和光催化的结合不但解决了光催化技术的一些难点,并且还使低温等离子体技术得到了优化。其操作条件更加温和,能耗进一步降低,过程中的副产物也得到了抑制。本文作者将介绍这一新技术处理污染物的基本原理,并从去除VOCs、NOx以及杀菌等方面介绍国内外对该技术的研究进展。